MathematischeGesellschaft Thermodynamic formalism and cohomology for resonance states of Laplace--Beltrami operators |
Vortragende Person:Prof. Dr. Anke Pohl, Universität Bremen
Veranstalter:Mathematisches Institut
Beschreibung:
Since several years it is known that certain discretizations for the geodesic flow on hyperbolic surfaces of \emph{finite area} allow to provide a dynamical characterizations of Maass cusp forms and a transfer-operator-based construction of their period functions. An important ingredient for these results is the characterization of Laplace eigenfunctions in parabolic cohomology by Bruggeman--Lewis--Zagier.
We discuss an extension of these results to Hecke triangle surfaces of \emph{infinite area} and Laplace eigenfunctions that are more general than Maass cusp forms. This is joint work with R. Bruggeman.
We discuss an extension of these results to Hecke triangle surfaces of \emph{infinite area} and Laplace eigenfunctions that are more general than Maass cusp forms. This is joint work with R. Bruggeman.
Ähnliche Veranstaltungen nach Schlagwort finden:
Veranstaltungsart:Kolloquium
Veranstaltungssprache:Englisch
Kategorie:Forschung
Export als iCalendar/ICS-Datei:
Direkter Link zur Veranstaltung:https://events.goettingen-campus.de/event?eventId=18262
EN DE