Cookies und Tracking helfen uns, Ihnen auf unserer Website ein besseres Erlebnis zu ermöglichen.
MathematischeGesellschaft
On CMC-foliations of asymptotically Euclidean manifolds
9.1.2020, 16:15 - 17:15
Vortragende Person:Prof. Dr. Carla Cederbaum, Fachbereich Mathematik, Universität Tübingen
Veranstaltungsort:Mathematisches Institut, Bunsenstr 3-5SitzungszimmerGras Geo Map
Veranstalter:Mathematisches Institut
Beschreibung:
Three-dimensional Riemannian manifolds are called asymptotically Euclidean if, outside a compact set, they are diffeomorphic to the exterior region of a ball in Euclidean space, and if the Riemannian metric converges to the Euclidean metric as the Euclidean radial coordinate r tends to infinity. In 1996, Huisken and Yau proved existence of a foliation by constant mean curvature (CMC) surfaces in the asymptotic end of an asymptotically Euclidean Riemannian three-manifold. Their work has inspired the study of various other foliations in asymptotic ends, most notably the foliations by constrained Willmore surfaces (Lamm—Metzger—Schulze) and by constant expansion/null mean curvature surfaces in the context of asymptotically Euclidean initial data sets in General Relativity (Metzger, Nerz).

After a rather extensive introduction of the central concepts and ideas, I will present a new foliation by constant spacetime mean curvature surfaces (STCMC), also in the context of asymptotically Euclidean initial data sets in General Relativity (joint work with Sakovich). This STCMC-foliation is well-suited to define the center of mass of an isolated system in General Relativity and thereby answers some previously open questions of relevance in General Relativity.
Ähnliche Veranstaltungen nach Schlagwort finden:
Veranstaltungsart:Kolloquium
Veranstaltungssprache:Englisch
Kategorie:Forschung
Kontakt:Annalena Wendehorst0551-3927752annalena.wendehorst@mathematik.uni-goettingen.de
Export als iCalendar/ICS-Datei:
Download
EN DE