MathematischeGesellschaft Irreducible SL(2,C)-representations of integer homology 3-spheres |
Vortragende Person:Prof. Dr. Raphael Zentner, Universität Regensburg
Veranstaltungsort:Mathematisches Institut, Bunsenstr 3-5Sitzungszimmer, Bunsenstr. 3-5, 37073 GöttingenGras Geo Map
Veranstalter:Mathematisches Institut
Beschreibung:
Abstract: We prove that the splicing of any two non-trivial knots in the 3-sphere admits an irreducible SU(2)-representation of its fundamental group.
This uses instanton gauge theory, and in particular a non-vanishing result of Kronheimer-Mrowka and some new results that we establish for holonomy perturbations of the ASD equation. Using a result of Boileau, Rubinstein and Wang (which builds on the geometrization theorem of 3-manifolds), it follows that the fundamental group of any integer homology 3-sphere different from the 3-sphere admits irreducible representations of its fundamental group in SL(2,C).
This uses instanton gauge theory, and in particular a non-vanishing result of Kronheimer-Mrowka and some new results that we establish for holonomy perturbations of the ASD equation. Using a result of Boileau, Rubinstein and Wang (which builds on the geometrization theorem of 3-manifolds), it follows that the fundamental group of any integer homology 3-sphere different from the 3-sphere admits irreducible representations of its fundamental group in SL(2,C).
Ähnliche Veranstaltungen nach Schlagwort finden:
Veranstaltungsart:Kolloquium
Veranstaltungssprache:Englisch
Kategorie:Forschung
Export als iCalendar/ICS-Datei:
Direkter Link zur Veranstaltung:https://events.goettingen-campus.de/event?eventId=7846
EN DE