In this talk, we present the main ideas for the analysis of a space-time DG method for the incompressible Navier-Stokes equations. This method combines an H(div)-conforming DG spatial discretization with a DG time-stepping scheme, and we show that it is both pressure robust and Reynolds semi-robust. Proving stability and convergence for high-order approximations requires nonstandard techniques. We overcome this challenge using carefully chosen test functions, establishing well-posedness, unconditional stability, and quasi-optimal error estimates (even for high Reynolds numbers). Finally, we present numerical experiments that validate the robustness and accuracy of the method.
Veranstaltungsort
Institut für Numerische und Angewandte Mathematik, Lotzestraße 16-18
MN 55
Veranstalter
Institut für Numerische und Angewandte Mathematik
PDF Download