

Optimizing active random searches in biological environments

Dr. M. Reza Shaebani

Department of Theoretical Physics Universität des Saarlandes, Saarbrücken

The question of determining the time it takes an active particle performing a persistent random walk to find a target is of particular interest in biological environments. We consider the stochastic motion of active particles in confined geometries and show that the mean first-passage time to a target admits a minimum as a function of the persistency. We clarify how the optimum persistency varies with the system size and boundary conditions, and discuss the optimal search strategy of run-andtumble random searches. The bacterial spreading will be analyzed as an example. We also address the first-passage problem in other different biological environments such as the transmission of chemical signals in neuronal dendrites.

Friday, May 18th, 2018 at 11:00 am

MPIDS, seminar room 0.79, Am Faßberg 17, Göttingen

Max Planck Institute for Dynamics and Self-Organization Department of Living Matter Physics Prof. Dr. Ramin Golestanian Email: ramin.golestanian@ds.mpg.de, Phone: +49-(0)551/5176-100 Am Faßberg 17, 37077 Göttingen, Germany