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Abstracts of the talk from June 2017

How complicated is the one-dimensional chaos: descriptive theory of chaos

We consider one-dimensional dynamical systems given by maps f ∈ C0(I, I) with I being a closed interval
under the condition that the topological entropy h(f) is positive.

Most recently, the book [1] of Sylvie Ruette appeared, the aim of which is “to survey the relations between
the various kinds of chaos and related notions for continuous interval maps”. However, the book does not even
mention the research of the talk author published back in the sixties of the past century [2-4]. The research
results showed a huge variety of the trajectory attractors (i.e., ω-limit sets) and the more complexity of their
attraction basins, pointing to a very intricate interweaving of different basins. All this gives a good idea about
the complexity of the one-dimensional chaos.

In [2], using the descriptive sets theory, it was proved that even basins of the simplest attractors – cycles – can
be very complex, namely, can be a set of the third class in the Baire classification. Later in [3], it was shown that
such situation is typical, namely, even for quadratic maps, the basin of any attractor that contains a cycle and is
not maximal or locally maximal (which is typical where h(f) > 0), is a set of the third Baire class.

In [4], the properties of the set of all trajectory attractors of f partially ordered by the set-theoretic inclusion,
were formulated. If h(f) > 0, then in this set there exists at least one maximal attractor A, that contains cycles
and so contains continuum many of locally maximal attractors other than cycles (and being Cantor sets); each
from these locally maximal attractors contains continuum many of minimal attractors other than cycles (and
hence being Cantor sets). It remains to add that the basin of every attractor contained in A is dense on A. The
proofs of all statements can be found in the author’s thesis from 1966 and in [5, sect. 4.1].
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Short summary of the talk :

Descriptive theory of sets is a classical section of mathematics, which
arose at the beginning of the last century.

The talk proposes
the basis of the descriptive theory of deterministic chaos :

Dynamical system if its topological entropy is positive
1) has a lot of different attractors of trajectories, namely, the continuum
of attractors;
2) basins of most attractors have a very complex structure, namely, they
are sets of the 3rd class in the terminology of the descriptive theory of
sets;
3) basins of different attractors are very intertwined and they can not be
separated from each other by open or closed sets, but only by sets of the
2nd class of complexity, and

in the space of all closed subsets of the state space (with the
Hausdorff metric), the set of all attractors is an attractor net (network,
grid) whose cells are formed by Cantor sets (whose points are themselves
attractors of the dynamical system).



We consider dynamical systems on a compact X , generated by a
continuous map f : X → X , mainly in the case of when X is an
interval I ⊂ R .

The asymptotic behavior of every trajectory f i (x), i = 0, 1, 2, ..., x ∈ X ,
is usually determined through the so-called ω-limit set, or, more simply,
the attractor of this trajectory – the invariant closed set Ax =⋂

m>0 {
⋃

i>m f i (x)}, which attracts the trajectory when the time goes to
infinity: for any of its vicinity U, there exists i0 = i0(U) such that
f i (x) ∈ U when i ≥ i0.

Each of the sets Ax , x ∈ X , can be as an attractor for many
trajectories. The set of all trajectories attracted by the same attractor is
called the basin of this attractor : if A is an attractor, then
B(A) = {x ∈ X | Ax = A} is the basin of the attractor A.

Most of the results presented in this talk were obtained and published in
the 60th of the last century, but even now, it seems, they are little known,
although all of them were translated into English at the same time.
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Now it’s well known that in one-dimensional dynamical systems the chaos
exists when the topological entropy of a system is positive. Also it is well
known that for one-dimensional systems the following is true:

For the dynamical system given by a map f ∈ C 0(I , I ), where I is a
closed interval, the following statements are equivalent:

(1) the topological entropy is positive, h(f ) > 0;
(2) f has a cycle of period 6= 2i , i ≥ 0;
(3) f has a homoclinic trajectory;
(4) there are m ≥ 1 and closed intervals J,K ⊂ I such that

f mJ ∩ f mK ⊂ J ∪ K ;
and each of them implies two more equivalent statements:

(5) there are x , y ∈ I such that limi→∞ sup ρ[f i (x), f i (y)] > 0
and limi→∞ inf ρ[f i (x), f i (y)] = 0;

(6) there is a continuum of trajectory pairs with the property (5).

The word chaos as a mathematical term first appeared in the article
“Period three implies chaos” by Li, Yorke (Monthly 103, 1975), and
exactly the property (6) was used there as the main in determining chaos.



However, the property (6), in general, can not be decisive for the
characterization of chaos. For example, the simple system of equations
ṙ = r(1− r), ϕ̇ = α (in the polar coordinates) has the periodic trajectory
r = 1 which is an attractor for this system. After multiplying the both
right-hand sides of these equations by the factor h(r , ϕ) such that
h(1, 0) = 0, h(r , ϕ) > 0 for others r , ϕ, almost each pair of trajectories
will have the property (5), i.e., the new system will have the property (6).
Indeed, after multiplying by h the phase portrait of the system remains
unchanged, only the periodic trajectory r = 1 is transformed into a
homoclinic trajectory to the singular point (1, 0). Namely the presence of
the singular point, where the velocity of motion is equal to 0, leads to
this effect: when a trajectory approaches to this point, the velocity
decreases significantly, and when the trajectory moves away from it, the
velocity increases again. Of course, there is no chaos in this system.



In the theory of dynamical systems, along with open sets (for
example, basins of sinks, wandering sets) and closed sets (ω-limit
sets, nonwandering sets, centers of dynamical systems), sets with
more complicated structure are considered.

There appear Fσ sets, which are unions of no more than countably
many closed sets (e.g. the set of all periodic points), Gδ sets,
which are intersections of no more than countably many open sets
(e.g. the set of all transitive points of transitive systems), Fσδ
sets, which are intersections of no more than countably many Fσ
sets, etc.

We also use Baire’s classification of sets according to which open
sets and closed sets together with all sets being both Fσ and Gδ
constitute the first class. The second class consists of sets that are
either Fσ or Gδ but not both, and sets that are simultaneously Fσδ
and Gδσ but do not belong to the first class. The third class
consists of sets being either Fσδ or Gδσ but not both, and sets that
... Further classes are defined in a similar way.



Usually descriptive upper estimates are obtained relatively easy,
even for dynamical systems on spaces X with countable basis of its
topology, and in [1], such upper estimates for systems on arbitrary
compacts have been obtained. Namely:

(a) if an attractor A is maximal, i.e. there is no attractors Ã ⊃ A,
then the basin B(A) is a Gδ set;
(b) if an attractor A is locally maximal, i.e. there exists a neighborhood
of A, not containing attractors Ã ⊃ A, then the basin B(A) is both a
Fσδ set and a Gδσ set;

(c) in any case, basin B(A) is (no more complex than) a Fσδ set in X ,
i.e. it always can be represented as an intersection of no more than
countably many unions of no more than countably many closed sets.

But the proof of the accessibility of these estimates at least for a
certain class of systems, and thus, the proof of the complex
interlacing of the basins of investigated attractors is really a very
complicated problem even in dimension one ...



Nevertheless, as it turned out, all these estimates are accessible
for one-dimensional systems when f has a cycle of period 6= 2i .
Namely, it was shown in [2-4] that in this case there exists a
maximal attractor Amax containing a cycle as well as continuum
many attractors of kind (c); the basin of each such (of kind (c))
attractor is a third class set, i.e., is a Fσδ set but not a Gδσ set.
This means that

1) here we have the very complex curved interlaced trajectories
with different asymptotic behavior, and

2) from the viewpoint of descriptive theory of sets,
one-dimensional chaos is as complex as is many-dimensional or even
infinity-dimensional chaos.



The arithmetic Baire‘s example of a third class set.

Let J be the irrational points set of the interval (0, 1). For every
point of J, there corresponds a unique continued fraction of the
form 1

n1 +
1

n2+
1

n3+...

.

The Baire set B of third class consists of points from J for which
nj →∞.

The same example from the “point of view” of dynamical systems:
Let the map g : J → J be given by g : x 7→ {1/x}, where {·} is
for the fractional part of a number. The map g is continuous on J
(in the metrics for continued fractions) and g(J) = J. Indeed,
if x = 1

n1+
1

n2+
1

n3+...

, then g(x) = 1
n2+

1
n3+...

.

Thus, the Baire set B is constituted by the points x ∈ J for
which g jx → 0 as j →∞, i.e., in our notations, B is just the
set B({0}) – the basin of the point x = 0.



The Baire criterion for belonging a set to the third class.

Let pj1j2...jk be perfect nowhere dense on R or J sets, and

1) pj1...jk−1jk ⊂ pj1...jk−1
,

2) pj1...jk−1jk is nowhere dense on pj1...,jk−1
,

3)
∞⋃

jk=1
pj1...jk−1jk is everywhere dense on pj1...jk−1

.

The set P =
∞⋂
k=1

∞⋃
j1,...,jk=1

pj1...jk is of Baire’s third class.



Theorem. If a map has an attracting-repulsing fixed point,
then the basin of this point is a third Baire class set.

Road to chaos through the “creeping” feedback (nonsmooth realization)

We can see in this figure how the repulsion from the fixed point (x = 0)
and the attraction to it occur (“creeping” feedback). It remains to show
that the set of points x for which f i (x)→ 0 when i →∞ can be
represented as an union of two sets, namely, a set that satisfies the Baire
criterion for being in the third class and a set of a Baire class ≤ 2. This
complicated problem has been solved in [2].





Theorem. If an attractor A is not maximal or locally maximal and
contains a cycle, then the basin B(A) is a third Baire’s class set.

The theorem proof is given in [3] and is based on the proof of the
corresponding theorem for the cycles in [2].

For one-dimensional systems, only the irreversibility of f gives
an opportunity for the feedback, which opens the way to
chaos.

In our case, there exists a maximal attractor Amax ⊃ A which
contains points x such that f −1(x) consists of at least two points
and thus there arises a “fast feedback” on Amax . Here we obtain
the “fast feedback” both for cycles and for locally maximal
attractors. Nevertheless, the “creeping feedback” remains decisive
for attractors that are not locally maximal.

The simplest example of such an attractor can be a homoclinic
trajectory as well as a cycle to which it directs ...

How does this “creeping feedback” occur ?



On the attractor Amax , the basin of every attractor A ⊆ Amax is a
dense set, B(A) ∩ Amax = Amax .

The basin B(Amax) is a Gδ set of the second Baire class, the
basin of every locally maximal attractor is both a Fσδ and a Gδσ
set and hence it is of the second Baire class.

For any attractor A ⊂ Amax that is not locally maximal and
contains a cycle, the basin B(A) is a Fσδ set of the third Baire
class. At the same time, basins of any two such attractors
A′,A′′, A′ ∩ A′′ = ∅, are separated by sets of the second Baire
class: there exist two locally maximal atractors A′lmax ⊃ A′ and
A′′lmax ⊃ A′′ such that A′lmax ∩ A′′lmax = ∅, and then the Fσ sets

B′ =
⋃∞

i=0 f
−i (A′lmax) =

⋃
A⊆A′lmax

B(A) and
B′′ =

⋃∞
i=0 f

−i (A′′lmax) =
⋃
A⊆A′′lmax

B(A)
separate the basins of A′ and A′′.



Of course, the information about the attractors themselves and their
interrelations must form an essential part of the descriptive theory of
chaos.

In [4] and [6, sec.4], the families M and M′ of all attractors and
of all locally maximal attractors contained in Amax , respectively, are
considered.

M contains a continuum of locally maximal attractors, other than
cycles; each of them is a Cantor set, on which periodic points are
everywhere dense.

M contains a continuum of minimal attractors, different from cycles,
and, hence, all of them are Cantor sets.

There is a natural partial order in M, namely:
if A′ ⊂ A, then A′ precedes A in M.

The maximal attractor Amax and every locally maximal attractor have no
direct predecessor in any maximum chain. Each attractor of such a
chain, other than Amax , has a continuum of direct successions.



Every maximal chain from M′ contains a countable number of locally
maximal attractors and is similar to the set of rational points:
for each A′ ⊂ A′′, there exists A′′′ such that A′ ⊂ A′′′ ⊂ A′′ ...



2X

The family of all attractors M when considered as a set in the
space 2X with the Hausdorff metric seems very interesting.

The family M in the space 2I forms a closed set [1996; Blokh,
Bruckner, Humke, Smital ]. This set is not dense on 2I .

In the space 2X , the family M′ and the family of all cycles
P ⊂M form the sets which ars everywhere dense on the set M,
i.e.

P = M′ = M



Attractor net (network) of Cantor sets

Every maximal chain L from M′ \P after its closure in the
Hausdorff metric, transforms into a Cantor set in 2X , which begins
at the point corresponding to the attractor Amax and finishes with
a point corresponding to a minimal or almost minimal attractors,
on which all or almost all trajectories are everywhere dense.

Various maximal chains from M′ \P intersect at some locally
maximal attractors, which leads in the space 2X to the intersection
of different Cantor sets at certain points and the formation (by
Cantor sets) of a network whose nodes are just locally maximal
attractors.



Hence, M as a set in the space 2X consists of the network of
intertwined Cantor sets, which begins at the point corresponding to
the attractor Amax , and of a countable number of isolated points
corresponding to cycles from P.



The set M has a certain self-similarity. So, if X = S1 and
f : x 7→ 2x mod 1, then the following statement seems plausible:
if A∗ ∈M′ is a locally maximal attractor and MA∗ =
{A ∈M| A ⊆ A∗}, then on 2X there exists a homeomorphism
φA∗ such that φA∗(M) = MA∗ .


