Colloquium

Population growth and extinction on a changing landscape

Prof. Dr. Mehran Kardar

Department of Physics Massachusetts Institute of Technology Cambridge, MA, USA

We explore the combined roles of varying fitness (environment) and migration on simple models of distributed populations. Within a mean-field approach, we find that variations in fitness lead to broad (power-law) distributions in local population size, somewhat smoothened by migration. This leads to novel critical behavior for a population going extinct, as well as "Richards-like growth" for an expanding population. Initially proposed as an empirical rule over half a century ago, the Richards equation has been frequently invoked in population modeling and pandemic forecasting. Central to this model is the introduction of a fractional exponent, typically fitted to the data. While various motivations for this non-analytical form have been proposed, it is still considered foremost an empirical fitting procedure. Our justification of the Richards growth law thus provides a testable connection to the distribution of constituents of the distributed population. If time permits, I shall discuss growth and extinction of competing bacteria at the front of an expanding colony.

Wednesday, Nov. 23rd, 2022 at 2:15 pm

MPI-DS, Riemannraum 1.40 Am Fassberg 17, Göttingen, and Zoom Meeting ID: 959 2774 3389

Passcode: 651129, direct link

