


SCIENTIFIC SEMINAR

Dr Alastair Stewart

Victor Chang Cardiac Research Institute Sydney, Australia

The F1-ATPase rotary catalytic cycle

 F_1F_0 ATP synthase interchanges phosphate transfer energy and proton motive force via a rotary catalysis mechanism. Isolated F_1 -ATPase catalytic cores can hydrolyse ATP, passing through a series of intermediate conformational states to generate rotation of a central rotor subunit. Here we address two central questions regarding F_1 -ATPase function using cryo Electron Microscopy in combination with single molecule rotation studies. First, we provide structural models for the F_1 -ATPase in both the binding- and catalytic-dwell states. Each state shows three catalytic sites in different conformations, establishing the structures of the complete set of six states taken up during the catalytic cycle and providing molecular details for both the ATP binding and hydrolysis strokes. Second, we provide structural models of the rotorless F_1 -ATPase that demonstrate how the motor can rotate in the absence of the central rotor subunit. Overall, these findings provide a detailed picture of how the F_1 -ATPase catalyses the interconversion of ATP and

Large Seminar Room, Al Building 21/04/23 - 13:00

