

The impact of iron on biological nitrogen fixation in the ocean

Dr. Wiebke Mohr

MPI for Marine Microbiology Bremen Germany

Biological nitrogen (N₂) fixation is yet the largest source of fixed nitrogen (N) to the ocean and therefore exerts control on ocean productivity. The nitrogenase enzyme, which converts inert N₂ gas into bioavailable ammonia, has a high iron (Fe) requirement, and Fe fluxes to the ocean, frequently dust-borne, are thought to steer the activity of N₂-fixing microorganisms. While experiments on cultivated microorganisms suggest that Fe availability directly influences N₂ fixation, shipboard experimental Fe additions to mixed microbial communities often fail to stimulate N₂ fixation rates challenging the mechanisms of regulation. The determination of nanoSIMS-based single-cell N₂ fixation rates of major cyanobacterial N₂-fixers upon Fe addition allows us to investigate the mechanisms of Fe use and the effect of Fe uptake on their activity. Our combined data suggest that the identification of major N₂-fixing microorganisms and how they utilize Fe is critical to predict N₂ fixation activity in the contemporary and future changing ocean, particularly considering anticipated changes in aeolian dust deposition with climate change.

Thursday, November 30th, 2023 at 14:15 MPI-DS, Seminar room 0.79

Max Planck Institute for Dynamics and Self-Organization Laboratory for Fluid Physics, Pattern Formation and Biocomplexity Dr. Oliver Schlenczek Email: oliver.schlenczek@ds.mpg.de Am Faßberg 17, 37077 Göttingen, Germany